Monday

Solution Q. 10

 

Given the equation x=etan1(yx2x2)

we need to find (dydx) at x=1.

First, we take the natural logarithm of both sides:

lnx=tan1(yx2x2)

Let u=yx2x2. Then the equation becomes:

lnx=tan1(u)

Taking the tangent of both sides, we get:

u=tan(lnx)

Substituting back u=yx2x2, we have:

yx2x2=tan(lnx)

Solving for y:

y=x2(1+tan(lnx))

Next, we differentiate y with respect to x:

dydx=ddx[x2(1+tan(lnx))]

Using the product rule, we get:

dydx=2x(1+tan(lnx))+x2(sec2(lnx)1x)

Simplifying the second term:

dydx=2x(1+tan(lnx))+xsec2(lnx)

Evaluating at x=1:

  • ln(1)=0

  • tan(0)=0

  • sec2(0)=1

Substituting these values:

dydxx=1=21(1+0)+11=2+1=3

Thus, the value of (dydx) at x=1 is 3.

SImilarly find for other values of x.









Share this

Artikel Terkait

0 Comment to "Solution Q. 10"

Post a Comment

Note: Only a member of this blog may post a comment.