Given the equation x=etan−1(x2y−x2),
we need to find (dxdy) at x=1.
First, we take the natural logarithm of both sides:
lnx=tan−1(x2y−x2)Let u=x2y−x2. Then the equation becomes:
lnx=tan−1(u)Taking the tangent of both sides, we get:
u=tan(lnx)Substituting back u=x2y−x2, we have:
x2y−x2=tan(lnx)Solving for y:
y=x2(1+tan(lnx))Next, we differentiate y with respect to x:
dxdy=dxd[x2(1+tan(lnx))]Using the product rule, we get:
dxdy=2x(1+tan(lnx))+x2(sec2(lnx)⋅x1)Simplifying the second term:
dxdy=2x(1+tan(lnx))+xsec2(lnx)Evaluating at x=1:
ln(1)=0
tan(0)=0
sec2(0)=1
Substituting these values:
dxdyx=1=2⋅1⋅(1+0)+1⋅1=2+1=3Thus, the value of (dxdy) at x=1 is 3.
SImilarly find for other values of x.
0 Comment to "Solution Q. 10"
Post a Comment
Note: Only a member of this blog may post a comment.